Twice the Flow and Recirculation Rate With Next Generation PTFE Membrane Filter Cartridges

Mega-Pure PTFE membrane filter cartridges provide unsurpassed flow rate capability. Parker’s PTFE membrane cartridge outperforms all competitive cartridges of the same rating at a ratio of 2 to 1 or greater, thus reducing the number of cartridges and housings required. PTFE membrane filter cartridges are a low-cost alternative to all-Teflon cartridges. The Mega-Pure PTFE Membrane Series of filter cartridges meets or exceeds requirements for the filtration of UHP liquids used in the fabrication of state-of-the-art microelectronic devices.

The Mega-Pure PTFE Membrane Series is available in 0.05µm, 0.1µm, 0.2µm, 0.45µm and 1µm pore sizes.

Applications

UHP Chemicals
- Acids
- Solvents
- Photoresists
- Tank Vents
- Etchants
- Alkalines

- Developers
- Strippers
- Recirculation
- Wet-Etch Systems
- Rinse Baths

- Process Gases & Compressed Air
- Polymer Filtration

Features and Benefits

Superior PTFE Membrane Yields Maximum Filtration Results
- High flow rates and reduced pressure drops for improved filtration efficiency.
- Rinased to 18 megohm-cm resistivity with UHP water.
- Large, high-purity filtration area for maximum yields.
- Non-fiber releasing.
- Narrow pore size distribution ensures the ultimate in retention and flow rate.
- Available prewetted for immediate use in process.

Parker’s TQM System Assures Consistent Performance and Reliable Filtration
- Strict quality control measures include rigorous testing for rinse up, shedding, flow rate and extractable levels.
- Integrity-tested and testable in situ.
- Thermally welded, eliminating adhesive extractables.
- Biosafe in accordance with USP Class VI-121° Plastics Tests.
- Specifically designed to ensure cleanliness.
- All materials of construction are FDA listed as acceptable for potable and edible liquid contact according to CFR Title 21.
Specifications

Materials of Construction:
- Membrane: hydrophobic PTFE
- Membrane Support/Drainage: polypropylene
- Structural Components: polypropylene
- O-Ring Material: various
- Sealing Method: thermal welding

Dimensions:
- Diameter: 2.7 in (6.8 cm)
- Lengths: 10-40 in (25-102 cm)

Surface Area (10 in cartridge):
- Minimum 7.5 ft² (0.7 m²)

Integrity Test:
- Bubble Point (100% IPA):
 - $0.05 \mu m \geq 50 \text{ psig (3.4 bar)}$
 - $0.1 \mu m \geq 24 \text{ psig (1.7 bar)}$
 - $0.2 \mu m \geq 16 \text{ psig (1.1 bar)}$
 - $0.45 \mu m \geq 6 \text{ psig (0.4 bar)}$
 - $1 \mu m \geq 3 \text{ psig (0.2 bar)}$

Recommended Operating Conditions:
- Maximum Temperature:
 - 176°F (80°C) @ 30 \Delta P (2.1 bar)
- Maximum Differential Pressure:
 - Forward:
 - 70 psi (4.8 bar) @ 77°F (25°C)
 - 30 psi (2.1 bar) @ 176°F (80°C)
 - Reverse:
 - 50 psi (3.4 bar) @ 77°F (25°C)

Sterilization/Sanitization Methods:
- Hydrogen Peroxide
- Sodium Hydroxide
- IPA (70%)
- 180°F (82°C) Water

PTFE Cartridges:
Flow rate vs. \Delta P for a 1 cps liquid @ 73°F (23°C)**

Ordering Information

<table>
<thead>
<tr>
<th>PF</th>
<th>F</th>
<th>B</th>
<th>10</th>
<th>E</th>
<th>TC</th>
<th>E</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartridge Code</td>
<td>Pore Size (\mu m)</td>
<td>Diameter (in)</td>
<td>Length (in)</td>
<td>O-Ring Material</td>
<td>End Cap Configuration</td>
<td>Grade</td>
<td>Special Preparation</td>
</tr>
<tr>
<td>PF = Polypropylene/PTFE</td>
<td>D = 0.05</td>
<td>B = 2.7</td>
<td>10 = 10</td>
<td>B = Buna N</td>
<td>SC = 2-226/Rat</td>
<td>E = Electronics</td>
<td>W = Prewetted with Ozonated UHP Water</td>
</tr>
<tr>
<td>S = 0.1</td>
<td>20 = 20</td>
<td>C = CR 503</td>
<td>SF = 2-226/Fin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = 0.2</td>
<td>30 = 30</td>
<td>D = CR 570</td>
<td>TC = 2-222/Rat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = 0.45</td>
<td>40 = 40</td>
<td>E = EPR</td>
<td>TF = 2-222/Fin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q = 1</td>
<td></td>
<td></td>
<td></td>
<td>L = KR 8201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S = Silicone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T = PFA/Viton*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = Viton*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X = No O-Ring</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Factors:

<table>
<thead>
<tr>
<th>Pore Size (\mu m)</th>
<th>GPM/1 PSID</th>
<th>LPM/1 Bar</th>
<th>PSID/1 GPM</th>
<th>Bar/1 LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.5</td>
<td>82</td>
<td>0.67</td>
<td>0.012</td>
</tr>
<tr>
<td>0.1</td>
<td>3.0</td>
<td>164</td>
<td>0.33</td>
<td>0.006</td>
</tr>
<tr>
<td>0.2</td>
<td>4.5</td>
<td>247</td>
<td>0.22</td>
<td>0.004</td>
</tr>
<tr>
<td>0.45</td>
<td>6.5</td>
<td>356</td>
<td>0.15</td>
<td>0.003</td>
</tr>
<tr>
<td>1</td>
<td>7.5</td>
<td>411</td>
<td>0.13</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* Trademark of E.I. du Pont de Nemours & Co.
** Consult Process Filtration Division for gas flow data.